跳转至

粒子物理实验中的统计学

Abstract

  • Quarks *6
  • Leptons *6
  • Bosons *5
  • Higgs boson

SM

大型强子对撞机(LHC)

  • ATLAS
  • CMS
  • ALICE
  • LHCb

25 ns 碰撞一次,数据量巨大

A portrait of the Higgs boson in the CMS experiment ten years after the discovery

假设检验

自旋 \(0^+\) / \(1^+\)

ROOT 简介

CERN 开发的数据分析 Python 库

系统误差

Nuisance parameters:影响参数估计,但不是我们关心的物理量

Systematic uncertainties

单摆

测量周期:测量 \(N\) 个周期的时间 \(\tau\),计算平均周期 \(T = \tau / N\) 测量摆长:如果尺子每次给出的结果

用似然函数和高斯限定条件纠正

\[L(\mu,\theta) = \prod_c \prod_i P_c(x_i|\mu,\theta) \cdot \prod_j C_j(g_j|\theta_j)\]
  • \(\mu\):感兴趣的物理量(POI)
  • \(P_c(x_i|\mu,\theta)\):Channel c 的概率密度函数(PDF)
  • \(C_j(g_j|\theta_j)\):额外的概率密度函数,不依赖于数据
  • \(x_i\):测量量(observables)
    • binned dataset: each entry contains the contents of a bin
    • unbinned dataset
  • \(\theta\):Nuisance parameters(NPs)
    • 系统误差的主要来源

Likelihood ratio:

\[\Lambda(\mu) = \frac{L(\mu,\hat{\hat{\theta}(\mu)})}{L(\hat{\mu},\hat{\theta})}\]

Discovery Significance

  • In the asymptotic limit (large N), the PLR, \(\Lambda(\mu) = \frac{L(\mu,\hat{\hat{\theta}(\mu)})}{L(\hat{\mu},\hat{\theta})}\), gives the compatibility between \(\mu\) and \(\hat{\mu}\) hypothesis.

Discovery with toys

  • Toy MC(Monte Carlo pseudo-experiments) can be generated directly from the components of the likelihood function.